
 YUI Library: Browser History Manager 2011-3-21 v2.9
Getting Started with Browser History Manager

1. Required Markup

The Browser History Manager requires the following in-page markup:

<iframe id="yui-history-iframe" src="asset"></iframe>

<input id="yui-history-field" type="hidden">

1. The asset loaded in the IFrame must be in the same domain as the
page (use a relative path for the src attribute to make sure of that)

2. The asset loaded in the IFrame does not have to be an HTML
document. It can be an image for example (if you use an image that
you also happen to use in your page, you will avoid an unnecessary
round-trip, which is always good for performance)

3. This markup should appear right after the opening <body tag.

2. Module Registration and the register Method

Use the following code to register a module:

YAHOO.util.History.register(str module, str initial

state, fn callback[, obj associated object, b scope])

Arguments:

1. module: Arbitrary, non empty string identifying the module.
2. Initial state: Initial state of the module (corresponding to its earliest

history entry). YAHOO.util.History.getBookmarkedState may
be used to find out what this initial state is if the application was
accessed via a bookmark.

3. callback: Function that will be called whenever the Browser History
Manager detects that the state of the specified module has changed.
Use this function to update the module’s UI accordingly.

4. associated object: Object to which your callback will have access;
often the callback’s parent object.

5. scope: Boolean – if true, the callback runs in the scope of the
associated object.

3. Using the onReady Method

Once you’ve registered at least one module, you should use the Browser
History Manager's onReady method. In your handler, you should
initialize your module(s) based on their current state. Use the function
YAHOO.util.History.getCurrentState to retrieve the current
state of your module(s).

YAHOO.util.History.onReady(function () {
 var currentState =

YAHOO.util.History.getCurrentState("module");
 // Update UI of module to match current state
});

4. Initializing the Browser History Manager

Before using the Browser History Manager, you must initialize it, passing
in the id of the required HTML elements created in step 1:

YAHOO.util.History.initialize("yui-history-field",
"yui-history-iframe");

Storing New History Entries: The navigate Method

Any registered module can create a new history entry at any time. Doing so
creates a new “stop” to which the user can navigate to via the back/forward
buttons and that can be bookmarked in the browser. You can create new history
entries in your script using the navigate method.

YAHOO.util.History.navigate(str module, str new state);

Arguments:

1. module: Module identifier you used when you registered the module.
2. new state: String representing the new state of the module.

Note: The navigate method returns a Boolean indicating whether the new state was successfully stored.
Note: The multiNavigate method allows you to change the state of several modules at once, creating a single
history entry, whereas several calls to navigate would create several history entries.

A Sample Interaction

YAHOO.util.History Methods:

getBookmarkedState(str module)
returns str bookmarked state

getCurrentState(str module) returns str

current state
getQueryStringParameter(str param

name[, str query string]) returns str
param value

initialize(str stateFieldId, str
histFrameId)

navigate(str module, str state) returns

Boolean success
multiNavigate(arr states) returns

Boolean success
register(str module, str initial state, fn

callback[, obj associated object, b
scope])

Dependencies

Browser History Manager
requires the YAHOO Global
Object and the Event Utility.

