9.’ YUI Library: Browser History Manager

Getting Started with Browser History Manager Storing New History Entries: The navigate Method

Any registered module can create a new history entry at any time. Doing so

1. Required Markup

The Browser History Manager requires the following in-page markup:

<iframe id="yui-history-iframe" src="asset"></iframe>
<input id="yui-history-field" type="hidden">

1. The asset loaded in the IFrame must be in the same domain as the
page (use a relative path for the src attribute to make sure of that)

2. The asset loaded in the IFrame does not have to be an HTML
document. It can be an image for example (if you use an image that
you also happen to use in your page, you will avoid an unnecessary
round-trip, which is always good for performance)

3. This markup should appear right after the opening <body tag.

2. Module Registration and the register Method

Use the following code to register a module:

YAHOO.util.History.register (str module, str initial
state, fn callback[, obj associated object, b scopel)

Arguments:

1. module: Arbitrary, non empty string identifying the module.

2. Initial state: Initial state of the module (corresponding to its earliest
history entry). YAHOO.util.History.getBookmarkedState may
be used to find out what this initial state is if the application was
accessed via a bookmark.

3. callback: Function that will be called whenever the Browser History
Manager detects that the state of the specified module has changed.
Use this function to update the module’s Ul accordingly.

4. associated object. Object to which your callback will have access;
often the callback’s parent object.

5. scope: Boolean — if true, the callback runs in the scope of the
associated object.

3. Using the onReady Method

Once you've registered at least one module, you should use the Browser
History Manager's onkReady method. In your handler, you should
initialize your module(s) based on their current state. Use the function
YAHOO.util.History.getCurrentState to retrieve the current
state of your module(s).

YAHOO.util.History.onReady (function () {

var currentState =
YAHOO.util.History.getCurrentState ("module") ;
// Update UI of module to match current state
b

4. Initializing the Browser History Manager

Before using the Browser History Manager, you must initialize it, passing
in the id of the required HTML elements created in step 1:

YAHOO.util.History.initialize("yui-history-field",
"yui-history-iframe");

Arguments:

YAHOO.util.History.navigate (str module,

creates a new “stop” to which the user can navigate to via the back/forward
buttons and that can be bookmarked in the browser. You can create new history
entries in your script using the navigate method.

str new state);

1. module: Module identifier you used when you registered the module.
2. new state: String representing the new state of the module.
Note: The navigate method returns a Boolean indicating whether the new state was successfully stored.

Note: The multiNavigate method allows you to change the state of several modules at once, creating a single
history entry, whereas several calls to navigate would create several history entries.

v2.9
YAHOO.util.History Methods:

2011-3-21

AT —
February 2007 *
SuMo TuWeTh Fr Sa
1]2]s
456 7 8[9]10
1112 13 14 15 16 17
181920 21 2223 24
252627 28

=

A Sample Interaction

March 2007 *
SuMo TuWeTh Fr Sa
1]2]s
45678910
111213 14 15 16 17
181920 21 22 23 24
25 26 27 28 29 30 31

-

M

800 tossns

April 2007
SuMo TuWe Th Fr Sa
1[2[s]a[s]6]7
8 9 10111213 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

PAGE LOAD:

On page load, the calendar module is
registered, its intial state is set, and
the BHM initialized. From the BHM
onLoad handler, YAHOO.util.
History.getCurrentState
returns the initial state of the calendar
module (February 2007 in this
example). We use this to render the
calendar widget.

initial state: 2_2007

current state: 2_2007

fragment: none (o default initial
state is used)

RETURN TO INITIAL
TATE:

Again the user hits the back button
and the BHM again notices that
there is a difference between the
current state and the displayed state
of the calendar module; it calls the
onstateChange callback for the
calendar, which triggers the update
to the calendar using the default
initial state (February 2007). The
next actuation of the back button will
take the user to the previous page in
the browser's history.

initial state: 2_2007

current state: 2_2007

fragment: none (o default initial
state is used)

LI e —

< Februay2007 * [
SuMoTuWeTh FrSa |

123 |
4567 8[9]0
111213141516 17 |
18192021 222324 |
2526 27 28

—

user interacts with application

STATE CHANGE 1:

The user navigates to the next

calendar month. By script,

we use the navigate method to

modify the state of the calendar

module. The BHM notices a change

in the state of the calendar module,

calls the calendar module's

onStateChange callback (specified

attime of registration) which

allows us to update the calendar

widget using the new state value.

'YAHOO.util.History.
navigate("calendar",
"3_2007")

initial state: 2_2007

current state: 3_2007

fragment: #calendar=3_2007

RETURN TO STATE 1:
When the user hits the back button
again, the BHM notices that there is
a difference between the current
state and the displayed state of the
calendar module; it calls the
onstateChange callback for the
calendar, which triggers the update
to the calendar using the current
state (March 2007).

initial state: 2_2007

current state: 3_2007

fragment: #calendar=3_2007

fetacss;modulsbistonywithibacigbution

March 2007
SuMo TuWeTh Fr Sa
1]2]8
456788910
1112 13 14 15 16 17
181920 21 22 23 24
25 26 27 28 29 30 31

—

.

STATE CHANGE 2: —_— |
The user again navigates to the next
calendar month. Again,

we use the navigate method to
modify the state of the calendar
module, a change which triggers the
onStateChange handler, which
updates the calendar module.
YAHOO.util.History.

navigate("calendar",
"4_2007")
initial state: 2_2007
current state: 4_2007
fragment: #calendar=4_2007
RETURN TO STATE 2:
When the user comes back to the
page via the back button, the
calendar module is registered, its
initial state is set, and the BHM
initialized. YAOO. util.History.
getCurrentState returns the last
state of the calendar module before

the user left the page (April 2007 in
this example). We use this to render
the calendar widget.

initial state: 2 2007

current state: 4_2007

fragment: #calendar=4_2007

returns via back button

L —

April 2007
SuMo TuWeTh Fr Sa
1/2(3|/4(5/6|7
8 9 10111213 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

=

getBookmarkedState(str module)
returns str bookmarked state

getCurrentState(str module) returns sir
current state

getQueryStringParameter(str param
name, str query string]) returns str
param value

initialize(str stateFieldld, str
histFrameld)

navigate(str module, str state) returns
Boolean success

multiNavigate(arr states)
Boolean success

register(str module, str initial state, fn
callback{, obj associated object, b
scope))

returns

Dependencies

Browser History Manager
requires the YAHOO Gilobal
Object and the Event Utility.

