
 YUI Library: Selector Utility 2011-3-21 v2.9
Usage: query()

Use query to select one or more DOM elements based on a
simple selector string. The query method is used to return all
nodes that match your criteria unless the firstOnly arg is true.

var matchingNodes = YAHOO.util.Selector.query
(“ul li a”, “itemList”);

Note: Will return all anchor elements within list-items of unordered lists who are descendants of
the element whose id attribute is “itemList”.

Usage: YAHOO.util.Selector.query()

YAHOO.util.Selector.query(string selector[, node
| string startingNode, bool firstOnly])

Arguments:
(1) selector: A string representing the CSS selector you want to

target.
(2) startingNode: The node at which to begin the search

(defaults to document). Be as specific as possible in choosing
your startingNode to maximize performance.

(3) firstOnly: Whether or not to return only the first match.

Returns:
(1) Matching Node(s): An array of nodes that match your

selector criteria. If firstOnly is true, this returns a single
node or null if no match.

Usage: YAHOO.util.Selector.filter()

YAHOO.util.Selector.filter(arr | nodeset nodes,
string selector)

Arguments:
(1) nodes: A nodeList or an array of nodes from which you want

to select specific nodes that match your criteria.
(2) selector: A CSS selector against which you want to test and

filter the nodes.

Usage: YAHOO.util.Selector.test()

YAHOO.util.Selector.test(str | elRef node,
string selector)

Arguments:
(1) node: A node to test
(2) selector: A CSS selector against which you want to test ther

the node.

Note: returns true if the node matches the selector, otherwise false.

Pseudo-classes
The Selector Utility supports the use of the pseudo-classes listed here; for more info on these,
see the W3C Selectors working draft (http://www.w3.org/TR/css3-selectors/#pseudo-classes).

Pseudo-class Description
:root The root of the document; in HTML 4.x, this is the HTML element.

:nth-
child(an+b)

Starting from the bth child, match every ath element.

:nth-last-
child(an+b)

An element that has an + b siblings after it.

:nth-of-
type(an+b)

An element that has an + b siblings before it that share the same
element name.

:nth-last-of-
type(an+b)

An element that has an + b siblings after it that share the same
element name.

:first-child Same as :nth-child(1) — the first child of a given element.

:last-child Same as :nth-last-child(1) — the last child of a given element.

:first-of-type Same as :nth-of-type(1) — the first child of a given element with a
given element name.

:last-of-type Same as :nth-last-of-type(1) — the last child of a given type of the
specified element.

:only-child An element who is the only child of its parent node.

:only-of-type An element whose element name is not shared by any sibling nodes.

:empty An element that has no children.

:not() The negation pseudo-class; takes a simple selector as an argument,
representing an element not represented by the argument.

:contains() An element whose textual contents contain the substring provided in
the argument.

:checked A radio button or checkbox that is in a checked state.

Notes regarding (an+b) notation:
Starting from the bth child, match every ath element. For example, “nth-child(2n+1)” starts from the first
element and returns every other element. The “odd” and “even” keywords are supported, so “2n+1” is
equivalent to “odd”. “1n+2” and “n+2” are equivalent. “nth-child(0n+3)” is equivalent to “nth-child(3)”. Zero
value means no repeat matching, thus only the first bth element is matched. “3n+0” is equivalent to “3n”.

Attribute Operators
att=val equality att^=val value starts with val
att!=val inequality att$=val value ends with val
att~=val value matches one of

space-delimited words in
val

att*=val value contains at least one
occurrence of val

att|=val value starts with val or val- att test for the existence of the
attribute

Solutions

Selector.query(“#nav ul:first-of-type > li:not(.selected)”); //
Starting from the first “ul” inside of “nav” , return all “li”
elements that do not have the “selected” class.

Selector.query(“ul:first-of-type > li.selected”, “nav”, true); //

Starting from the first “ul” inside of “nav” , return the first
“li” element that has the “selected” class.

Dom.addClass(Selector.query(“#data tr:nth-child(odd)”), “odd”) //

add the class “odd” to all odd rows within the “data” element.

YAHOO.util.Selector Methods

query(string selector[, node | string
startingNode, bool firstOnly]) the
startingNode can be passed in as a string
element ID or as an element reference
and defaults to the document element;
returns an array of matching nodes

filter(arr | nodeList nodes, string
selector) returns any nodes that match
the selector

test(str | elRef node, string selector)
returns boolean indicating whether the
node matches the selector criteria

Combinators
The Selector Utility supports the
following four combinators:

“ ” Descendant
Combinator: “A B”
represents an element
B that has A as an
ancestor.

> Child Combinator: “A >
B” represents an
element B whose
parent node is A.

+ Direct Adjacent
Combinator: “A + B”
represents an element
B immediately following
a sibling element A.

~ Indirect Adjacent
Combinator: “A ~ B”
represents an element
B following (not
necessarily
immediately following)
a sibling element A.

Dependencies

The Selector Utility requires
only the YAHOO Global
Object.

